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5.1 Binary Linear Block Codes

Error Control, Error Detection,
Error Correction

4 N

Two types of error control:
1. error detection

2. error correction

Error Detection

e Error detection: the determination of whether errors are present in a
received word

usually by checking whether

the received word is one of the

Choose M = 2K from
2™ possibilities to be

used as codewords.

valid codewords.

® When a two-way channel exists between source and destination, the
receiver can request retransmission of information containing
detected errors.
This error-control strategy is called automatic-repeat-request (ARQ).
® An error pattern is undetectable if and only if it causes the received
word to be a valid codeword other than that which was transmitted.

Ex: In single-parity-check code, error will be undetectable when the number

@ of bits in error is even.
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Example: (3,2) Single-parity-check code

e If we receive 001, 111, 010,
or 100, we know that
something went wrong in

the transmission. 001 ______ 9011

* Suppose we transmitted 101 Pid e
but the error pattern is 110. 101 @F~——~~ -—=111

The received vector is 011
011 is still a valid

codeword.

The error is undetectable.

~

-

Error Correction

* In FEC (forward error correction) system, when the
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid

codewords was transmitted.

® It is possible for a detectable error pattern to cause the
decoder to select a codeword other than that which was
actually transmitted. The decoder is then said to have
committed a decoding error.




a . N
Square array for error correction by

arity checking.
p y g h: [b1;b2"“'b9]
® The codeword is formed by o
arranging k message bits in by | b, | b3 | p;
a square array b b b D,
4 | s | De | P2

whose rows and columns C4

are checked by 2\/% parity b7 b8 b9 2_93_
bits. | P4 | Ps | Pe |
® A transmission error in one
message bit causes a row X = [by, by, ..., bo, D1, D2, .-, Dé]
and column parity failure
with the error at the
intersection, so single
errors can be corrected.
@ [Carlson & Crilly, p 594] J
4 N
Example: square array
e k=9 o
e 24/9 =6 parity bits. by | by | b3 P1 .
b = [by, by, ..., bo] b | b5 | bs | P2
e 1,Y2,---» Y9 b7 b8 b9 2_9?:-
= 101110100 | Da 1 Ds 1 Dg
X = [b1:b2: ---:b9t P1, D2, ""p6] : : : :
= 101110100 __ y= 100110100001111
1 10 |1 o o
111160 o o
110 10

e I I : : I I I I
K [Carlson & Crilly, p 594] J




Review: Even Parity

® A binary vector (or a collection of 1s and Os) has even
parity if and only if the number of 1s in there is even.

© Suppose we are given the values of all the bits except one bit.

We can force the vector to have even parity by setting the value of the

remaining bit to be the sum of the other bits.

Single-parity-check code Square array

[10110_] 1101
011 |1 (_
010 (1 .

(" y
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5.1 Binary Linear Block Codes

Introduction to Minimum Distance




Minimum Distance (d

The minimum distance (d_; )

min )
of a block code is the
minimum Hamming distance between all pairs of distinct

codewords.

e Ex.:

A channel encoder map blocks of two bits to five-bit (channel) codewords. The
four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over
the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d,,;, among the codewords?

2 5 | :

00000 el= 1|1IIII0I1I:II.II.KNII.IIII 1]
01000 3 4
10001 3

dmin =1

11111

e Ex. Repetition code:
(- i

-
MATLAB: Distance Matrix and d,,.,

function D = distAll(C)

This can be used to find dyi, for all block codes.
There is no assumption about linearity of the

M = size(C,1);

?zo: ?ezoigm:ﬁ) - code. Soon, we will see that we can simplify the
for j -: Gi+1):M calculation when the code is known to be linear.
D(i,3) = sum(mod(C(i,:)+C{,:),2));
end
end >> Cc=[00000; 0100 O0; -
D = D+D"; 10001; 1111 1];
>> distAll(C)
function dmin = dmin_block(C) ans =
D = distAll(C); > s &
Dn0 = D(D>0); 2 3 0 3
dmin = min(Dn0); 5 4 3 0




Weight and Distance

o The Weight of a vector is the number of nonzero coordinates in
the vector.

The weight of a vector X is commonly written as W(g)
Ex.w(010111) =

For BSC with cross-over probability p < 0.5, error pattern with
smaller weights (less #1s) are more likely to occur.

® The Hamming distance between two n-bit blocks is the
number of coordinates in which the two blocks differ.

Ex.d(010111,011011) =

Note:
The Hamming distance between any two vectors equals the weight of their
sum.
The Hamming distance between the transmitted codeword X and the
received vector Y is the same as the weight of the corresponding error
== 1

pattern €.

d...., for linear block code

® For any linear block code, the minimum distance (d,; )
can be found from the minimum Weight of its nonzero

codewords.

So, instead of checking (sz) pairs,

Simply check the weight of the 2¥ codewords.

function dmin = dmin_linear(C)
w = sum(C,b2);
w([w>01);

W =
dmin = min(w);
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Proof

Because the code is linear, for any two distinct codewords ¢ and ¢®, we know that ¢ @ ¢® € ¢;

thatis ¢ @ c® = c for some nonzero ¢ € C. Therefore,
d(g(l),g(z)) = W(g(l) ® g(z)) = W(g) for some nonzero ¢ € C.
This implies

(i, 4(e®.€2) = mipw(c).

W@ c#0

Note that inequality is used here because we did not show that g(l) &) 9(2) can produce all possible

nonzero ¢ € C.

; 1) @)X
Next, for any nonzero ¢ € C, note that c(lgrél(gec d(E( )‘ E( )) = rc%lcn W(E)
d(c,0) =w(c® 0) = w(c). cWzc@ c+0

Note that ¢, 0 is just one possible pair of two distinct codqwords. This implies

min  d(c®,c®) < minw(c).
WDec = = ceC. =
cMxc@ 0

-

L

X

Example

0 1 1 1

/

1 0 0 1

00

01
01 1 1
=bG =[b b2]1 0 0 1 10

11

0000
1001
0111
1110

=[b, b b b ®b,] ]
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5.1 Binary Linear Block Codes

Probability of Error Patterns and

Minimum Distance Decoder

Probability of Error Patterns

* Recall: We assume that the channel is BSC with crossover probability p.

® For the discrete memoryless channel that we have been considering
since Chapter 3,

*  the probability that error pattern € = 00101 is
(1-p)1 —p)p(1 —pp.
© Note also that the error pattern is independent from the transmitted vector
X

® In general, from Section 3.4,
the probability the error pattern € occurs is
) p d(xy) p w(e)
p®Y) (1 — p)n-dly) = <m> 1-p"= <m> 1-p)"
° Ifweassumep < 0.5,

[the error patterns that have larger Weights are less likely to occur.]

¢ This also supports the use of minimum distance decoder.

@
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5.1 Binary Linear Block Codes

Properties of d,in

d....: two important facts

(o For any linear block code, the minimum distance (d,;,) A
can be found from the minimum Weight of its nonzero
codewords.

So, instead of checking (22k) pairs,
simply check the weight of the 2* codewords. y

* A code with minimum distance d_. can
detect all error patterns of weight w <d . -1.

min

) din—1
correct all error patterns of We1ght w < I%L

the floor function

(- y




Visual Interpretation of d. .-

Twe types of error control: | |
1. error detection

System Model for Chapter 5

b i

Recall: Codebook construction

X  error correction

Error Detection
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Visual Interpretation of d. .-
® Consider all the (valid) codewords (in the codebook).

Visual Interpretation of d_.-
® Consider all the (valid) codewords (in the codebook).

® We can find the distances between them.




Visual Interpretation of d. .,
® Consider all the (valid) codewords (in the codebook).

e We can find the distances between them.

® We can then find dmin-

€Y) 9(6)
1 o
C 9(4)

L C

9(3)

® )
e (2)

Visual Interpretation of d_.-

* When we draw a circle (sphere, hypersphere) of radius dyip
around any codeword, we know that there can not be another

codeword inside this circle.

* The closest codeword is at least d i, away.

c(©®
(1) —— N )
€ [ ) £(4)/ - N\ C(S) (8)
d \ C
/ min \ ® -
[ I
X c® <@
.C(Z) \ /
- ~ - v




Visual Interpretation of d. .-

® When we draw a circle (sphere, hypersphere) of radius dyjp
around any codeword, we know that there can not be another

codeword inside this circle.

* The closest codeword is at least d i, away.
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Visual Interpretation of d_.-

® When we draw a circle (sphere, hypersphere) of radius dyjp
around any codeword, we know that there can not be another

codeword inside this circle.

* The closest codeword is at least d i, away.

(1) 2(6)
ctt @)
) o c® c®
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() | K
(2)
\ C
\ /
N 7/
~




d .. and Error Detection

min
* Suppose codeword 9(5) is chosen to be transmitted; that is
x=c®
277N ¢®
E(:) c@® /Vmin \\.
‘o ®
[ ® 1 -
\ X=C
®
Ve ’ ¢
° ~--7 “®

d

® Suppose codeword Q(S) is chosen to be transmitted; that is
x=c®,

and Error Detection

min

® The received vector Y can be calculated from

/




d....and Error Detection

® When dpj, > W, there is no way that W errors can change

a valid codeword into another valid codeword.

o y

f
d....and Error Detection

® When dpjp, < W, itis possible that W errors can change a

valid codeword into another valid codeword.

y TN ¢®
(1) \,
C
o e I/ e_7T ®
\ ECN ®
v
SN - s c?
o
*® °




d .. and Error Detection

¢ For some codewords,

min

when dpj, = W, it is possible that W errors can change a

valid codeword into another valid codeword.

(©
o) - “®
c @), ~
¢ : R c®
e —_—
CN ‘
I
x = 9(3} <
.c(z) \ 7 ®
= V4
~ o -

d....and Error Detection

¢ To be able to detect all w-bit errors, we need dp,j, = w + 1.

With such a code there is no way that w errors can change a

valid codeword into another valid codeword.
When the receiver observes an illegal codeword, it can tell that
a transmission error has occurred.

When dpjn > W, there is no way
that W errors can Change a valid

codeword into another valid

® codeword.
When d i, < W, itis possible
that W errors can change a valid
.C(Z) codeword into another valid

codeword.




d_. and Error Correction

® To be able to correct all w-bit errors, we need d,j, = 2w + 1.

min

This way, the legal codewords are so far apart that even with w

changes, the original codeword is still closer than any other

codeword.
P Cs
t C y I’ (4) PR
| - C \ , A
\ ® 1' l\ . ! ll 9(5) \\ c(8)
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d_. IS an important quantity

e To be able to correct all w-bit errors, we need d,i, = 2w + 1.

min

This way, the legal codewords are so far apart that even with w
changes, the original codeword is still closer than any other

codeword.




d....: two important facts

(e For any linear block code, the minimum distance (d,;,) A
can be found from the minimum Weight of its nonzero
codewords.

So, instead of checking (sz) pairs,
simply check the Weight of the 2¥ codewords. y

® A code with minimum distance d_, can

detect all error patterns of Weight w<d . -1.

min

) dmin—1
correct all error patterns of Welght w < l%]\

the floor function

J

Example

Repetition code withm = 5
® We have seen that it has d i, =

® It can detect (at most) €rrors.

® It can correct (at most) €rrors.

~

Minimum Distance (d,.)
The m r L o

..........




Example

Consider the code

C € {0000000000, 0000011111, 1111100000, and 1111111111}

[s it a linear code? a ® | cD|c@|c® c(‘”\
0000000000 ¢

0000011111 €@

1111100000 ¢®

o J =

min K1111111111 c® )
® It can detect (at most) errors.
® It can correct (at most) €rrors.
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