Asst. Prof. Dr. Prapun Suksompong

<u>prapun@siit.tu.ac.th</u>

5.1 Binary Linear Block Codes

Error Control, Error Detection, Error Correction

Two types of **error control**:

- 1. error detection
- 2. error correction

Error Detection

- **Error detection**: the determination of whether errors are present in a received word $M = 2^k \text{ possibilities}$
 - usually by checking whether the received word is one of the valid codewords.

Choose $M = 2^k$ from 2^n possibilities to be used as codewords.

- When a two-way channel exists between source and destination, the receiver can request **retransmission** of information containing detected errors.
 - This error-control strategy is called **automatic-repeat-request (ARQ)**.
- An error pattern is **undetectable** if and only if it causes the received word to be a valid codeword other than that which was transmitted.
 - Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

Example: (3,2) Single-parity-check code

- If we receive 001, 111, 010, or 100, we know that something went wrong in the transmission.
- Suppose we transmitted 101 but the error pattern is 110.
 - The received vector is 011
 - 011 is still a valid codeword.
 - The error is undetectable.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a **decoding error**.

68

Square array for error correction by parity checking.

- The codeword is formed by arranging k message bits in a square array whose rows and columns are checked by $2\sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

$$\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$$

 $\mathbf{x} = [b_1, b_2, \dots, b_9, p_1, p_2, \dots, p_6]$

[Carlson & Crilly, p 594]

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Introduction to Minimum Distance

Minimum Distance (d_{\min})

The **minimum distance** (d_{\min}) of a block code is the minimum Hamming distance between all pairs of <u>distinct</u> codewords.

• Ex.:

A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are 00000, 01000, 10001, and 11111. A codeword is transmitted over the BSC with crossover probability p = 0.1.

(a) What is the minimum (Hamming) distance d_{min} among the codewords?

MATLAB: Distance Matrix and d_{min}

```
function D = distAll(C)
                             This can be used to find d_{\min} for all block codes.
M = size(C, 1);
                             There is no assumption about linearity of the
D = zeros(M,M);
                             code. Soon, we will see that we can simplify the
for i = 1:M-1
                             calculation when the code is known to be linear.
     for j = (i+1):M
          D(i,j) = sum(mod(C(i,:)+C(j,:),2));
     end
end
                                        >> C=[0 0 0 0 0; 0 1 0 0; ...
D = D+D';
                                              1 0 0 0 1; 1 1 1 1 1];
                                        >> distAll(C)
function dmin = dmin_block(C)
                                        ans =
                                                               5
                                             0
                                                   1
                                                         2
D = distAll(C);
                                             1
                                                   0
                                                         3
                                                               4
Dn0 = D(D>0);
                                             2
                                                         0
                                                               3
                                                   3
dmin = min(Dn0);
                                                         3
                                                               0
                                             5
                                                   4
                                        >> dmin = dmin_block(C)
                                        dmin =
                                             1
```

74

d_{\min} for linear block code

- For any linear block code, the minimum distance (d_{min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

```
function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);
```

Proof

Because the code is linear, for any two distinct codewords $\underline{\mathbf{c}}^{(1)}$ and $\underline{\mathbf{c}}^{(2)}$, we know that $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} \in \mathcal{C}$; that is $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} = \underline{\mathbf{c}}$ for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$. Therefore,

$$d(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}})$$
 for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$.

This implies

$$\min_{\substack{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\\\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \geq \min_{\substack{\underline{\mathbf{c}}\in\mathcal{C}\\\underline{\mathbf{c}}\neq\underline{\mathbf{0}}}} w(\underline{\mathbf{c}}).$$

Note that inequality is used here because we did not show that $\underline{c}^{(1)} \oplus \underline{c}^{(2)}$ can produce all possible nonzero $\underline{\mathbf{c}} \in \mathcal{C}$.

Next, for any nonzero $\underline{c} \in C$, note that

$$d(\underline{\mathbf{c}},\underline{\mathbf{0}}) = w(\underline{\mathbf{c}} \oplus \underline{\mathbf{0}}) = w(\underline{\mathbf{c}}).$$

 $\min_{\substack{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\\\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \stackrel{\clubsuit}{=} \min_{\substack{\underline{\mathbf{c}}\in\mathcal{C}\\\underline{\mathbf{c}}\neq\underline{\mathbf{0}}}} w(\underline{\mathbf{c}})$

1

Note that $\underline{c}, \underline{0}$ is just one possible pair of two distinct codewords. This implies

$$\min_{\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)} \in \mathcal{C} \atop \underline{\mathbf{c}}^{(1)} \neq \underline{\mathbf{c}}^{(2)}} d(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}) \leq \min_{\underline{\mathbf{c}} \in \mathcal{C}, \atop \underline{\mathbf{c}} \neq \underline{\mathbf{0}}} w(\underline{\mathbf{c}}).$$

Example

$$G = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 $\underline{\mathbf{x}} = \underline{\mathbf{b}} \mathbf{G} = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
 $\underline{\mathbf{x}} = [b_2 & b_1 & b_1 & b_1 \oplus b_2]$

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Probability of Error Patterns and Minimum Distance Decoder

Probability of Error Patterns

- Recall: We assume that the channel is **BSC** with crossover probability **p**.
- For the discrete memoryless channel that we have been considering since Chapter 3,
 - the probability that error pattern $\underline{\mathbf{e}} = 00101$ is (1-p)(1-p)p(1-p)p.
 - Note also that the error pattern is independent from the transmitted vector $\underline{\underline{x}}$
- In general, from Section 3.4, the probability the error pattern **e** occurs is

$$p^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})}(1-p)^{n-d(\underline{\mathbf{x}},\underline{\mathbf{y}})} = \left(\frac{p}{1-p}\right)^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})}(1-p)^n = \left(\frac{p}{1-p}\right)^{w(\underline{\mathbf{e}})}(1-p)^n$$

- If we assume *p* < 0.5,
 the error patterns that have larger weights are less likely to occur.
 - This also supports the use of minimum distance decoder.

Asst. Prof. Dr. Prapun Suksompong

<u>prapun@siit.tu.ac.th</u>

5.1 Binary Linear Block Codes

Properties of d_{\min}

d_{\min} : two important facts

- For any linear block code, the minimum distance (d_{min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

• A code with minimum distance *d*_{min} can

- detect all error patterns of weight $w \leq d_{\min}$ -1.
- correct all error patterns of weight $w \leq \left|\frac{d_{\min}-1}{2}\right|$.

the floor function

Visual Interpretation of d_{\min}

Visual Interpretation of d_{\min}

- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

92

d_{min} and Error Detection

- Suppose codeword $\underline{\mathbf{c}}^{(5)}$ is chosen to be transmitted; that is $\mathbf{x} = \mathbf{c}^{(5)}$.
- The received vector **y** can be calculated from

 $\underline{\mathbf{y}} = \underline{\mathbf{x}} \oplus \underline{\mathbf{e}}.$

• When $d_{\min} < w$, it is possible that w errors can change a valid codeword into another valid codeword.

<text><text><figure>

d_{min} and Error Detection

- To be able to **detect** *all w*-bit errors, we need $d_{\min} \ge w + 1$.
 - With such a code there is no way that *w* errors can change a valid codeword into another valid codeword.
 - When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

When $d_{\min} > w$, there is no way that w errors can change a valid codeword into another valid codeword.

When $d_{\min} \leq w$, it is possible that w errors can change a valid codeword into another valid codeword.

d_{\min} is an important quantity

- To be able to **correct** *all w*-bit errors, we need $d_{\min} \ge 2w + 1$.
 - This way, the legal codewords are so far apart that even with *w* changes, the original codeword is still *closer* than any other codeword.

Example

Repetition code with n = 5

- We have seen that it has $d_{\min} = 5$.
- It can detect (at most) _____ errors.
- It can correct (at most) _____ errors.

Minimum Dis	stan	ce	(d_{\min})		
The minimum distant minimum Hamming di codewords.	nce (d, istance	betw	f a block een all pa	code is the irs of <u>distinct</u>	
 Ex.1 A channel speeder to fair possible tolevands are 1000 the DPC with conserver probability (a) What is the minimum (Man 	neg blocks σ (00000 100 ty p ==0.1, outing) dista	Charge de la constante la constante de la constante de la constante de la constante de	n to Broo bit (ch 11111: A vaniers , second the sta	amel) colescela. The cell is transmitted over dewords?	
d 00000	01000	19091	11111	-	-
and a second	0	+	8	Contraction on a	-
81948	-			Carl Sector	-
10001					-
				and the second se	

